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Outline

Topics
I Owicki-Gries and rely-guarantee
I Concurrent separation logic
I Combining CSL and RG (RGSep, CAP, Iris)
I Reasoning under weak memory consistency
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The Owicki-Gries method

I S. Owicki and D. Gries. An axiomatic proof technique for
parallel programs I. Acta Informatica 6(4):319-340 (1976)



Hoare logic

Hoare triples: {P}C {Q}
I P : precondition
(assertion describing initial state)

I C : program
I Q : postcondition
(assertion describing final state if the program terminates)

Proof rules for reasoning about sequential programs.

P ⇒ Q[e/x ]
{P} x := e {Q}

{P}C1 {Q} {Q}C2 {R}
{P}C1;C2 {R}
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Parallel composition (first attempt)

How about the following rule?

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∧ P2}C1‖C2 {Q1 ∧ Q2}
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Parallel composition (first attempt)

How about the following rule?

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∧ P2}C1‖C2 {Q1 ∧ Q2}

This is unsound because of interference.{
x = 0

}{
x = 0

}
y := 1{
x = 0

}
{
>

}
x := 1{
>

}{
x = 0

}
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Non-interference (second attempt)

Require that the two threads do not interfere.

How about the following condition?

vars(P1) ∩modified(C2) = ∅ and
vars(P2) ∩modified(C1) = ∅
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Non-interference (second attempt)

Require that the two threads do not interfere.

How about the following condition?

vars(P1) ∩modified(C2) = ∅ and
vars(P2) ∩modified(C1) = ∅

Too restrictive: cannot verify simple programs.{
x = 0

}
x := x + 1 x := x + 2{

x = 3
}
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Owicki-Gries method (1976)

OG = Hoare logic + rule for parallel composition

{P1} c1 {Q1} {P2} c2 {Q2}
the two proofs are non-interfering
{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}

Non-interference
R ∧ P ` R{u/x} for every:

I assertion R in the proof outline of one thread
I assignment x := u with precondition P in the proof
outline of the other thread
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Example: Parallel increment (easy case)

{
x = 0

}
x := x + 1 x := x + 2{

x = 3
}
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Example: Parallel increment (easy case)

{
x = 0

}{
x = 0 ∨ x = 2

}
x := x + 1{
x = 1 ∨ x = 3

}
{
x = 0 ∨ x = 1

}
x := x + 2{
x = 2 ∨ x = 3

}{
x = 3

}
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Example: Monotonic counter

{
x = 0

}

{
x = 0

}

x := 1

{
x = 1

}

x := 2

{
x = 2

}

{
>

}

a := x

{
x ≥ a

}

b := x

{
b ≥ a

}

{
x = 2 ∧ b ≥ a

}
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Example: Monotonic counter

{
x = 0

}{
x = 0

}
x := 1{
x = 1

}
x := 2{
x = 2

}

{
>

}

a := x
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x ≥ a
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b := x
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Example: Monotonic counter

{
x = 0

}{
x = 0

}
x := 1{
x = 1

}
x := 2{
x = 2

}

{
>

}
a := x{
x ≥ a

}
b := x{
b ≥ a

}{
x = 2 ∧ b ≥ a

}
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Example: Parallel increment again

Can we prove the following triple?{
x = 0

}
x := x + 1 x := x + 1{

x = 2
}

But how can we derive the postcondition x = 2?

We need auxiliary variables:
i.e. variables that do not affect the program’s control flow nor
the data flow of the other variables, but record information
useful for the proof.
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Example: Parallel increment again

We can certainly prove something weaker.{
x = 0

}{
x = 0 ∨ x = 1

}
x := x + 1{
x = 1 ∨ x = 2

}
{
x = 0 ∨ x = 1

}
x := x + 1{
x = 1 ∨ x = 2

}{
x = 1 ∨ x = 2

}
But how can we derive the postcondition x = 2?

We need auxiliary variables:
i.e. variables that do not affect the program’s control flow nor
the data flow of the other variables, but record information
useful for the proof.
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Parallel increment with auxiliary variables

Add two auxiliary variables a and b:
Represent the contribution of each thread to x.{

x = 0
}

(a, b) := (0, 0)

(x , a) := (x + 1, 1) (x , b) := (x + 1, 1){
x = 2

}
(x1, x2) := (e1, e2) ; atomic parallel assignment.
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Parallel increment with auxiliary variables

Add two auxiliary variables a and b:
Represent the contribution of each thread to x.{

x = 0
}

(a, b) := (0, 0){
x = a + b ∧ a = 0 ∧ b = 0

}{
x = a + b ∧ a = 0

}
(x , a) := (x + 1, 1){
x = a + b ∧ a = 1

}
{
x = a + b ∧ b = 0

}
(x , b) := (x + 1, 1){
x = a + b ∧ b = 1

}{
x = 2

}
(x1, x2) := (e1, e2) ; atomic parallel assignment.
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Rely-Guarantee reasoning



Compositionality and lack thereof

OG is not compositional.
I Recall the parallel composition rule:

{P1} c1 {Q1} {P2} c2 {Q2}
the two proofs are non-interfering
{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}

I The specification of a program C is not just {P}_ {Q},
but also all the intermediate assertions in the outline.

Rely-guarantee ; compositional version of OG.
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Rely-guarantee specifications

RG judgment: C sat (P,R ,G ,Q)
I P : precondition
(assertion describing initial state)

I R : rely condition
(relation describing atomic steps of environment)

I G : guarantee condition
(relation describing atomic steps of the program)

I Q : postcondition
(assertion describing final state if the program terminates)

σ0
env−−→σ1

prog−−→σ2
env−−→σ3

prog−−→σ4
prog−−→σ5

env−−→σ6 . . . σn−1
prog−−→σn

If P(σ0) and all R(σi , σi+1) for all σi
env−−→σi+1,

then G(σj , σj+1) for all σj
prog−−→σj+1, and Q(σn) (the final state).
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Stability

Definition (Stability)
An assertion P is stable under a relation R iff
P(σ) ∧ R(σ, σ′)⇒ P(σ′) for all states σ and σ′.

RG judgment: C sat (P,R ,G ,Q)
We require that the P and Q are stable under R .

I The environment can interfere at the beginning/end.

Rule for atomic statements

{P}C {Q ∧ G} C is atomic
P stable under R Q stable under R

C sat (P,R ,G ,Q)
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Some rules

Weakening

C sat (P,R ,G ,Q)
P ′ ⇒ P R ′ ⇒ R G ⇒ G ′ Q ⇒ Q′

C sat (P ′,R ′,G ′,Q′)

Sequential composition

C1 sat (P,R ,G ,Q) C2 sat (Q,R ,G ,Q′)
C1;C2 sat (P,R ,G ,Q′)
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Parallel composition

Bottom-up rule:

C1 sat (P1,R1,G1,Q1) G1 ⇒ R2
C2 sat (P2,R2,G2,Q2) G2 ⇒ R1

C1‖C2 sat (P1 ∧ P2,R1 ∧ R2,G1 ∨ G2,Q1 ∧ Q2)

I Each thread’s guarantee must imply the other’s rely.

Top-down rule:

C1 sat (P,R ∨ G2,G1,Q1) G1 ∨ G2 ⇒ G
C2 sat (P,R ∨ G1,G2,Q2) Q1 ∧ Q2 ⇒ Q

C1‖C2 sat (P,R ,G ,Q)
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