
Concurrent program logics

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

EPIT 2018, May 2018



Outline

Topics
I Owicki-Gries and rely-guarantee
I Concurrent separation logic
I Combining CSL and RG (RGSep, CAP, Iris)
I Reasoning under weak memory consistency

2



The Owicki-Gries method

I S. Owicki and D. Gries. An axiomatic proof technique for
parallel programs I. Acta Informatica 6(4):319-340 (1976)



Hoare logic

Hoare triples: {P}C {Q}
I P : precondition
(assertion describing initial state)

I C : program
I Q : postcondition
(assertion describing final state if the program terminates)

Proof rules for reasoning about sequential programs.

P ⇒ Q[e/x ]
{P} x := e {Q}

{P}C1 {Q} {Q}C2 {R}
{P}C1;C2 {R}

4



Parallel composition (first attempt)

How about the following rule?

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∧ P2}C1‖C2 {Q1 ∧ Q2}

5



Parallel composition (first attempt)

How about the following rule?

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∧ P2}C1‖C2 {Q1 ∧ Q2}

This is unsound because of interference.{
x = 0

}{
x = 0

}
y := 1{
x = 0

}
{
>

}
x := 1{
>

}{
x = 0

}

5



Non-interference (second attempt)

Require that the two threads do not interfere.

How about the following condition?

vars(P1) ∩modified(C2) = ∅ and
vars(P2) ∩modified(C1) = ∅

6



Non-interference (second attempt)

Require that the two threads do not interfere.

How about the following condition?

vars(P1) ∩modified(C2) = ∅ and
vars(P2) ∩modified(C1) = ∅

Too restrictive: cannot verify simple programs.{
x = 0

}
x := x + 1 x := x + 2{

x = 3
}

6



Owicki-Gries method (1976)

OG = Hoare logic + rule for parallel composition

{P1} c1 {Q1} {P2} c2 {Q2}
the two proofs are non-interfering
{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}

Non-interference
R ∧ P ` R{u/x} for every:

I assertion R in the proof outline of one thread
I assignment x := u with precondition P in the proof
outline of the other thread

7



Example: Parallel increment (easy case)

{
x = 0

}
x := x + 1 x := x + 2{

x = 3
}

8



Example: Parallel increment (easy case)

{
x = 0

}{
x = 0 ∨ x = 2

}
x := x + 1{
x = 1 ∨ x = 3

}
{
x = 0 ∨ x = 1

}
x := x + 2{
x = 2 ∨ x = 3

}{
x = 3

}

8



Example: Monotonic counter

{
x = 0

}

{
x = 0

}

x := 1

{
x = 1

}

x := 2

{
x = 2

}

{
>

}

a := x

{
x ≥ a

}

b := x

{
b ≥ a

}

{
x = 2 ∧ b ≥ a

}

9



Example: Monotonic counter

{
x = 0

}{
x = 0

}
x := 1{
x = 1

}
x := 2{
x = 2

}

{
>

}

a := x

{
x ≥ a

}

b := x

{
b ≥ a

}

{
x = 2 ∧ b ≥ a

}

9



Example: Monotonic counter

{
x = 0

}{
x = 0

}
x := 1{
x = 1

}
x := 2{
x = 2

}

{
>

}
a := x{
x ≥ a

}
b := x{
b ≥ a

}{
x = 2 ∧ b ≥ a

}

9



Example: Parallel increment again

Can we prove the following triple?{
x = 0

}
x := x + 1 x := x + 1{

x = 2
}

But how can we derive the postcondition x = 2?

We need auxiliary variables:
i.e. variables that do not affect the program’s control flow nor
the data flow of the other variables, but record information
useful for the proof.

10



Example: Parallel increment again

We can certainly prove something weaker.{
x = 0

}{
x = 0 ∨ x = 1

}
x := x + 1{
x = 1 ∨ x = 2

}
{
x = 0 ∨ x = 1

}
x := x + 1{
x = 1 ∨ x = 2

}{
x = 1 ∨ x = 2

}
But how can we derive the postcondition x = 2?

We need auxiliary variables:
i.e. variables that do not affect the program’s control flow nor
the data flow of the other variables, but record information
useful for the proof.

10



Example: Parallel increment again

We can certainly prove something weaker.{
x = 0

}{
x = 0 ∨ x = 1

}
x := x + 1{
x = 1 ∨ x = 2

}
{
x = 0 ∨ x = 1

}
x := x + 1{
x = 1 ∨ x = 2

}{
x = 1 ∨ x = 2

}
But how can we derive the postcondition x = 2?

We need auxiliary variables:
i.e. variables that do not affect the program’s control flow nor
the data flow of the other variables, but record information
useful for the proof.

10



Parallel increment with auxiliary variables

Add two auxiliary variables a and b:
Represent the contribution of each thread to x.{

x = 0
}

(a, b) := (0, 0)

(x , a) := (x + 1, 1) (x , b) := (x + 1, 1){
x = 2

}
(x1, x2) := (e1, e2) ; atomic parallel assignment.

11



Parallel increment with auxiliary variables

Add two auxiliary variables a and b:
Represent the contribution of each thread to x.{

x = 0
}

(a, b) := (0, 0){
x = a + b ∧ a = 0 ∧ b = 0

}{
x = a + b ∧ a = 0

}
(x , a) := (x + 1, 1){
x = a + b ∧ a = 1

}
{
x = a + b ∧ b = 0

}
(x , b) := (x + 1, 1){
x = a + b ∧ b = 1

}{
x = 2

}
(x1, x2) := (e1, e2) ; atomic parallel assignment.

11



Rely-Guarantee reasoning



Compositionality and lack thereof

OG is not compositional.
I Recall the parallel composition rule:

{P1} c1 {Q1} {P2} c2 {Q2}
the two proofs are non-interfering
{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}

I The specification of a program C is not just {P}_ {Q},
but also all the intermediate assertions in the outline.

Rely-guarantee ; compositional version of OG.

13



Rely-guarantee specifications

RG judgment: C sat (P,R ,G ,Q)
I P : precondition
(assertion describing initial state)

I R : rely condition
(relation describing atomic steps of environment)

I G : guarantee condition
(relation describing atomic steps of the program)

I Q : postcondition
(assertion describing final state if the program terminates)

σ0
env−−→σ1

prog−−→σ2
env−−→σ3

prog−−→σ4
prog−−→σ5

env−−→σ6 . . . σn−1
prog−−→σn

If P(σ0) and all R(σi , σi+1) for all σi
env−−→σi+1,

then G(σj , σj+1) for all σj
prog−−→σj+1, and Q(σn) (the final state).

14



Stability

Definition (Stability)
An assertion P is stable under a relation R iff
P(σ) ∧ R(σ, σ′)⇒ P(σ′) for all states σ and σ′.

RG judgment: C sat (P,R ,G ,Q)
We require that the P and Q are stable under R .

I The environment can interfere at the beginning/end.

Rule for atomic statements

{P}C {Q ∧ G} C is atomic
P stable under R Q stable under R

C sat (P,R ,G ,Q)

15



Some rules

Weakening

C sat (P,R ,G ,Q)
P ′ ⇒ P R ′ ⇒ R G ⇒ G ′ Q ⇒ Q′

C sat (P ′,R ′,G ′,Q′)

Sequential composition

C1 sat (P,R ,G ,Q) C2 sat (Q,R ,G ,Q′)
C1;C2 sat (P,R ,G ,Q′)

16



Parallel composition

Bottom-up rule:

C1 sat (P1,R1,G1,Q1) G1 ⇒ R2
C2 sat (P2,R2,G2,Q2) G2 ⇒ R1

C1‖C2 sat (P1 ∧ P2,R1 ∧ R2,G1 ∨ G2,Q1 ∧ Q2)

I Each thread’s guarantee must imply the other’s rely.

Top-down rule:

C1 sat (P,R ∨ G2,G1,Q1) G1 ∨ G2 ⇒ G
C2 sat (P,R ∨ G1,G2,Q2) Q1 ∧ Q2 ⇒ Q

C1‖C2 sat (P,R ,G ,Q)

17


	The Owicki-Gries method
	Rely-Guarantee reasoning

