Concurrent program logics

Viktor Vafeiadis
Max Planck Institute for Software Systems (MPI-SWS)
EPIT 2018, May 2018
Topics

- Owicki-Gries and rely-guarantee
- Concurrent separation logic
- Combining CSL and RG (RGSep, CAP, Iris)
- Reasoning under weak memory consistency
The Owicki-Gries method

Hoare logic

Hoare triples: \(\{P\} \ C \ \{Q\} \)

- **\(P \): precondition**
 (assertion describing initial state)
- **\(C \): program**
- **\(Q \): postcondition**
 (assertion describing final state if the program terminates)

Proof rules for reasoning about **sequential** programs.

\[
\frac{P \Rightarrow Q[e/x]}{\{P\} x := e \ \{Q\}} \quad \frac{\{P\} C_1 \ \{Q\} \quad \{Q\} C_2 \ \{R\}}{\{P\} C_1; \ C_2 \ \{R\}}
\]
Parallel composition (first attempt)

How about the following rule?

\[
\begin{align*}
\{P_1\} & \quad C_1 \quad \{Q_1\} & \quad & \{P_2\} & \quad C_2 \quad \{Q_2\} \\
\{P_1 \land P_2\} & \quad C_1 || \quad C_2 \quad \{Q_1 \land Q_2\}
\end{align*}
\]
Parallel composition (first attempt)

How about the following rule?

\[
\begin{align*}
\{P_1\} C_1 \{Q_1\} & \quad \{P_2\} C_2 \{Q_2\} \\
\{P_1 \land P_2\} C_1 || C_2 \{Q_1 \land Q_2\}
\end{align*}
\]

This is \textit{unsound} because of \textit{interference}.

\[
\begin{align*}
\{x = 0\} \\
\{x = 0\} || \{\top\} \\
y := 1 \quad x := 1 \\
\{x = 0\} || \{\top\} \\
\{x = 0\}
\end{align*}
\]
Non-interference (second attempt)

Require that the two threads *do not interfere*.

How about the following condition?

\[
\text{vars}(P_1) \cap \text{modified}(C_2) = \emptyset \quad \text{and} \\
\text{vars}(P_2) \cap \text{modified}(C_1) = \emptyset
\]
Non-interference (second attempt)

Require that the two threads do not interfere.

How about the following condition?

\[\text{vars}(P_1) \cap \text{modified}(C_2) = \emptyset \text{ and } \text{vars}(P_2) \cap \text{modified}(C_1) = \emptyset \]

Too restrictive: cannot verify simple programs.

\[
\begin{align*}
\{x = 0\} \\
x &:= x + 1 \parallel x := x + 2 \\
\{x = 3\}
\end{align*}
\]
Owicki-Gries method (1976)

\[
\{P_1\} c_1 \{Q_1\} \quad \{P_2\} c_2 \{Q_2\}
\]

the two proofs are non-interfering

\[
\{P_1 \land P_2\} c_1 \parallel c_2 \{Q_1 \land Q_2\}
\]

Non-interference

\(R \land P \vdash R\{u/x\} \) for every:

- assertion \(R \) in the proof outline of one thread
- assignment \(x := u \) with precondition \(P \) in the proof outline of the other thread
Example: Parallel increment (easy case)

\[
\begin{align*}
\{x = 0\} \\
\quad \quad \quad \quad \quad x := x + 1 \quad \quad \quad \quad \quad x := x + 2 \\
\{x = 3\}
\end{align*}
\]
Example: Parallel increment (easy case)

\[
\begin{align*}
\{x = 0\} & \quad \{x = 0\} \\
\{x = 0 \lor x = 2\} & \quad \{x = 0 \lor x = 1\} \\
x := x + 1 & \quad x := x + 2 \\
\{x = 1 \lor x = 3\} & \quad \{x = 2 \lor x = 3\} \\
\{x = 3\} & \quad \{x = 3\}
\end{align*}
\]
Example: Monotonic counter

\[
\begin{align*}
\{x = 0\} \\
x &:= 1 & a &:= x \\
x &:= 2 & b &:= x \\
\{x = 2 \land b \geq a\}
\end{align*}
\]
Example: Monotonic counter

\[
\begin{align*}
\{x = 0\} & \quad \{x = 0\} \\
\{x = 0\} & \quad a := x \\
x := 1 & \quad \{x = 1\} \\
x := 2 & \quad b := x \\
\{x = 2\} & \quad \{x = 2 \land b \geq a\}
\end{align*}
\]
Example: Monotonic counter

\[
\begin{align*}
\{x = 0\} & \quad \{x = 0\} \quad \top \\
\{x = 0\} & \quad \{x = 1\} \quad \{x \geq a\} \\
x := 1 & \quad a := x \\
\{x = 1\} & \quad \{x \geq a\} \\
x := 2 & \quad b := x \\
\{x = 2\} & \quad \{b \geq a\} \\
\{x = 2 \land b \geq a\} &
\end{align*}
\]
Example: Parallel increment again

Can we prove the following triple?

\[
\begin{align*}
\{ x = 0 \} & \quad \{ x = 2 \} \\
\xrightarrow{x := x + 1} & \quad \xrightarrow{x := x + 1}
\end{align*}
\]

But how can we derive the postcondition \(x = 2 \)?

We need auxiliary variables: i.e. variables that do not affect the program's control flow nor the data flow of the other variables, but record information useful for the proof.
Example: Parallel increment again

We can certainly prove something weaker.

\[
\begin{align*}
\{ & x = 0 \} \\
\{ & x = 0 \lor x = 1 \} & \parallel & \{ & x = 0 \lor x = 1 \} \\
& x := x + 1 & & x := x + 1 \\
\{ & x = 1 \lor x = 2 \} & \parallel & \{ & x = 1 \lor x = 2 \} \\
& \{ & x = 1 \lor x = 2 \} \\
\end{align*}
\]

But how can we derive the postcondition \(x = 2 \)?
Example: Parallel increment again

We can certainly prove something weaker.

\[
\begin{align*}
\{x = 0\} & \quad \{x = 0 \lor x = 1\} & \quad \{x = 0 \lor x = 1\} \\
x := x + 1 & \quad x := x + 1 \\
\{x = 1 \lor x = 2\} & \quad \{x = 1 \lor x = 2\} \\
\{x = 1 \lor x = 2\} & \quad \{x = 1 \lor x = 2\}
\end{align*}
\]

But how can we derive the postcondition \(x = 2\)?

We need *auxiliary* variables:
i.e. variables that do not affect the program’s control flow nor the data flow of the other variables, but record information useful for the proof.
Parallel increment with auxiliary variables

Add two auxiliary variables a and b:

Represent the contribution of each thread to x.

\[
\begin{align*}
\{ x = 0 \} \\
(a, b) &:= (0, 0) \\
\{ x = 2 \}
\end{align*}
\]

\[
\begin{align*}
(x, a) &:= (x + 1, 1) & (x, b) &:= (x + 1, 1) \\
\text{atomic parallel assignment.}
\end{align*}
\]
Parallel increment with auxiliary variables

Add two auxiliary variables \(a\) and \(b\):

Represent the contribution of each thread to \(x\).

\[
\left\{ \begin{array}{l}
 x = 0 \\
 (a, b) := (0, 0)
\end{array} \right\}
\]

\[
\left\{ \begin{array}{l}
 x = a + b \land a = 0 \land b = 0
\end{array} \right\}
\]

\[
\left\{ \begin{array}{l}
 x = a + b \land a = 0 \\
 (x, a) := (x + 1, 1)
\end{array} \right\} \quad \left| \quad \left\{ \begin{array}{l}
 x = a + b \land b = 0 \\
 (x, b) := (x + 1, 1)
\end{array} \right\}
\]

\[
\left\{ \begin{array}{l}
 x = a + b \land a = 1 \\
 (x, a) := (x + 1, 1)
\end{array} \right\} \quad \left| \quad \left\{ \begin{array}{l}
 x = a + b \land b = 1 \\
 (x, b) := (x + 1, 1)
\end{array} \right\}
\]

\[
\left\{ \begin{array}{l}
 x = 2
\end{array} \right\}
\]

\[
(x_1, x_2) := (e_1, e_2) \quad \leadsto \quad \text{atomic parallel assignment.}
\]
Rely-Guarantee reasoning
OG is not compositional.

- Recall the parallel composition rule:

\[
\{P_1\} c_1 \{Q_1\} \quad \{P_2\} c_2 \{Q_2\}
\]

the two proofs are non-interfering

\[
\{P_1 \land P_2\} c_1 \parallel c_2 \{Q_1 \land Q_2\}
\]

- The specification of a program \(C\) is not just \(\{P\} \rightarrow \{Q\}\), but also all the intermediate assertions in the outline.

Rely-guarantee \(\sim\) compositional version of OG.
Rely-guarantee specifications

RG judgment: C sat (P, R, G, Q)

- **P** : **precondition**
 (assertion describing initial state)

- **R** : **rely condition**
 (relation describing atomic steps of environment)

- **G** : **guarantee condition**
 (relation describing atomic steps of the program)

- **Q** : **postcondition**
 (assertion describing final state if the program terminates)

\[
\sigma_0 \xrightarrow{\text{env}} \sigma_1 \xrightarrow{\text{prog}} \sigma_2 \xrightarrow{\text{env}} \sigma_3 \xrightarrow{\text{prog}} \sigma_4 \xrightarrow{\text{prog}} \sigma_5 \xrightarrow{\text{env}} \sigma_6 \ldots \sigma_{n-1} \xrightarrow{\text{prog}} \sigma_n
\]

If $P(\sigma_0)$ and all $R(\sigma_i, \sigma_{i+1})$ for all $\sigma_i \xrightarrow{\text{env}} \sigma_{i+1}$,
then $G(\sigma_j, \sigma_{j+1})$ for all $\sigma_j \xrightarrow{\text{prog}} \sigma_{j+1}$, and $Q(\sigma_n)$ (the final state).
Stability

Definition (Stability)

An assertion \(P \) is *stable* under a relation \(R \) iff
\[
P(\sigma) \land R(\sigma,\sigma') \Rightarrow P(\sigma')
\]
for all states \(\sigma \) and \(\sigma' \).

RG judgment: \(C \ sat (P, R, G, Q) \)

We require that the \(P \) and \(Q \) are stable under \(R \).
- The environment can interfere at the beginning/end.

Rule for atomic statements

\[
\begin{align*}
\{P\} \ C \ \{Q \land G\} & \quad C \ is \ atomic \\
P \ stable \ under \ R & \quad Q \ stable \ under \ R \\
\hline
C \ sat (P, R, G, Q)
\end{align*}
\]
Some rules

<table>
<thead>
<tr>
<th>Weakening</th>
<th>Sequential composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P' \Rightarrow P$</td>
<td>$C_1 \text{ sat } (P, R, G, Q)$</td>
</tr>
<tr>
<td>$R' \Rightarrow R$</td>
<td>$C_2 \text{ sat } (Q, R, G, Q')$</td>
</tr>
<tr>
<td>$G \Rightarrow G'$</td>
<td>$C_1; C_2 \text{ sat } (P, R, G, Q')$</td>
</tr>
<tr>
<td>$Q \Rightarrow Q'$</td>
<td></td>
</tr>
<tr>
<td>$C \text{ sat } (P, R, G, Q)$</td>
<td>$C_1 \text{ sat } (P, R, G, Q)$</td>
</tr>
</tbody>
</table>
Parallel composition

Bottom-up rule:

\[
\begin{align*}
C_1 \text{ sat } (P_1, R_1, G_1, Q_1) & \quad G_1 \Rightarrow R_2 \\
C_2 \text{ sat } (P_2, R_2, G_2, Q_2) & \quad G_2 \Rightarrow R_1 \\
\hline
C_1 \| C_2 \text{ sat } (P_1 \land P_2, R_1 \land R_2, G_1 \lor G_2, Q_1 \land Q_2)
\end{align*}
\]

- Each thread’s guarantee must imply the other’s rely.

Top-down rule:

\[
\begin{align*}
C_1 \text{ sat } (P, R \lor G_2, G_1, Q_1) & \quad G_1 \lor G_2 \Rightarrow G \\
C_2 \text{ sat } (P, R \lor G_1, G_2, Q_2) & \quad Q_1 \land Q_2 \Rightarrow Q \\
\hline
C_1 \| C_2 \text{ sat } (P, R, G, Q)
\end{align*}
\]